

Management of Secondary Treatment Trains

Malcolm Pirnie, Inc.

Presentation Overview

- Background
- Secondary Treatment Trains
 - Air Stripping
 - Granular Activated Carbon (GAC)
 - Advanced Oxidation Processes (AOPs)
 - Biological Treatment
- References
- Points of Contact

Secondary Treatment: Definitions

Destruction or removal of contaminants from remedial waste streams prior to discharge of treatment effluent.

Secondary Treatment Train Process Selection

Environmental Technologies Design Options Tool (ETDOT™)

http://es.epa.gov/ncerqa_abstracts/centers/cencitt/year3/process/hand2.html

Background: Water Quality

Water Quality Impacts on Selection (Inorganics)

- Hardness: Causes scaling of air stripper.
 - >50 mg/L tray air stripper; >300 mg/L tower air stripper
- Turbidity: Decreases UV irradiation in AOPs.
- Alkalinity: Carbonate and biocarbonate ions scavenge hydroxyl radicals to create carbonate radicals in AOPs.
- Nitrates/Nitrites: (>1 mg/L) Adsorb UV light in the range of 230-240 mm and 300-310 mm.
- Phosphates/Sulfates: Have potential to scavenge hydroxyl radicals in AOPs.

Water Quality Impacts on Selection (Metals)

- Iron: (>3 mg/L) Fouls air strippers and advanced UV oxidation systems.
- <u>Iron, Copper, Manganese:</u> Forms organic complexes in advanced oxidation systems.
- Manganese: Forms permanganate in AOPs.
- Arsenic and Mercury: Exist in organic forms.
 Can use capacity in activated carbon systems and impact performance of advanced oxidation systems.

Background: Water Quality

Water Quality Impacts on Selection (Organics)

- NOM: Natural organic matter reduces adsorption capacity of GAC. Will scavenge hydroxyl radicals in AOPs.
- <u>TOC/SOCs:</u> Total organic carbon/synthetic organic compounds can reduce GAC adsorption capacity. Will scavenge hydroxyl radicals in AOPs.
- Oil and Grease: Will foul air stripper systems, and will reduce adsorption capacities in GAC systems. Will scavenge hydroxyl radicals in AOPs.

Background: Water Quality

Post-Chlorination and Post-Stripping Formation of Trihalomethanes (THMs)

Presentation Overview

- Background
- Secondary Treatment Trains
 - Air Stripping (AS)
 - Granular Activated Carbon (GAC)
 - Advanced Oxidation Processes (AOP)
 - Biological Treatment
- References
- Points of Contact

- Definition
- Types of AS Systems
- Design Calculation
- Design Variables
- Advantages/Disadvantages
- Costs
- Case Studies

Air Stripping

Definition

Mass transfer of compounds from an aqueous stream to a gaseous stream.

Commonly Used Types of Air Stripping Systems

Packed Tower

Commonly Used Types of Air Stripping Systems (cont.)

Aeration Tanks

Low Profile

RITS OCT 2001: Secondary Treatment Trains

Design Calculations – Towers

$$Z = \frac{\overline{Q}}{(1-A)KLa} ln(A+(1-A)\frac{C_0}{C_e})$$

Z = Height of tower, ft

 \overline{Q} = Hydraulic load, gpm/ft²

 K_{La} = Mass transfer coefficient

 C_o = Initial/influent concentration, mg/L

 C_e = Effluent concentration, mg/L

A = Adsorption coefficient

Design Calculations – Towers (cont.)

$$\%R = (1 - e^b) / (A - e^b)$$

$$b = \frac{K_L a Z (1 - A)}{\overline{Q}}$$
 &

$$A = \frac{Q}{GH}$$

Q = Liquid Flow

G = Gas Flow

H = Henry's Law Constant

Design Considerations – Towers (cont.)

Parameter	Effect of Increasing (?) Parameter on Operations and Cost, Assuming No Change in Tower Design	Effect on Increasing (?) Parameter on Tower Design, Assuming Removal Efficiency is Maintained
Liquid Loading Rate	? Removal Efficiency ? Cost	? Tower Height (HTU)
Air/Water Ratio	? Removal Efficiency ? Cost	? Packing Volume
Water Temperature	? Removal Efficiency? Heating Cost? Henry's Law Constant	? Packing Volume
Henry's Law Constant	? Removal Efficiency	? Packing Volume (AWR)
Packing Type and Size	? Size ? Removal Efficiency	? Size ? Packing Volume ? Pressure Drop

Advantages/Disadvantages

Advantages

- Ease of operation
- Computer models available for design
- Low capital and operating costs

Disadvantages

- Corrosion
- Scaling
- Iron fouling
- Biological fouling
- Off-gas treatment
- Aesthetics (tower)

Costs

MTBE Removal

Flow (gpm)

60

600

6,000

Capital (\$1000)

\$50-100

\$200-700

\$2000-7000

Annual (O&M \$1000)

\$50-60

\$80-280

\$250-1400

High Flow Case Study - Brewster, NY

Problem:

Design an air stripper (tower) to treat total volatile organic compounds (VOCs) of 6,000 ppb, including TCE (120 ppb), PCE (5,600 ppb), VC (20 ppb), and 1,2-DCE (210 ppb). (Flow = 50 gpm)

- Treated effluent to be reinjected back into groundwater regime for use as drinking water by Village of Bedford, NY (Beneficial Reuse).
- Fee offered design consultant was \$2 million to design, build, and startup.

Site Layout

High Flow Case Study - Brewster, NY

Air Stripping Tower

High Flow Case Study - Brewster, NY

- TCE: 120 ppb
- PCE: 5,600 ppb
- VC: 20 ppb
- 1,2-DCE: 210 ppb
- Total VOCs:6,000 ppb

Flowrate (Q) = 50 gpm Design/Build = \$2.0M O&M = \$75K/yr

Summary

High Flow Case Study - Brewster, NY

Remedy

- Discharge to stream instead of reinjection
- Wetlands study to assure no impact
- Roto-rooter effluent pipe every 6 months
- Clean stripper media or change annually

Low Flow Case Study - Cincinnati Gear

- 1,1-TCE: 1,400 ppb
- 1,1-DCA: 760 ppb
- 1,2-DCA: 39 ppb
- 1,2-DCE: 3,400 ppb

Flowrate (Q) = 6.5 gpm Capital = \$107,500 O&M = \$18,500/yr

Summary

Low Flow Case Study - Cincinnati Gear

- System oversized to accommodate future flows and loads.
- System is operating successfully as designed, and meeting projected annual operating costs over the past 3 years of operation.
- Requested system shutdown to evaluate post-remediation conditions of groundwater. If successful, site closure will be achieved 2 years early.

Air Stripping Summary

- Need to understand water chemistry and site hydrogeology for effective overall design.
- Can be a cost-effective pump-and-treat solution for remediating VOC-contaminated groundwater.
- Need to identify any pre-treatment that may be necessary (hardness and iron removal to minimize scaling and fouling).
- Determine need for ancillary process to protect against biofouling.
- Consider post-treatment water chemistry.

Presentation Overview

- Background
- Secondary Treatment Trains
 - Air Stripping (AS)
 - Granular Activated Carbon (GAC)
 - Advanced Oxidation Processes (AOP)
 - Biological Treatment
- References
- Points of Contact

- Definition
- Source
- Design Calculations
- Design Considerations
- Variables & DesignParameters
- Advantages/Disadvantages
- Costs
- Case Studies

Granular Activated Carbon

Definition

Intermolecular attraction between molecules of a dissolved chemical (adsorbate) and the GAC (adsorbent) surface results in adsorbtive forces that physically attract the adsorbate to the GAC as water passes through a vessel.

GAC - Source

- Bituminous Coal
 - ▶ \$1.05 \$1.20/lb
- Coconut Shell
 - ▶ \$0.65 \$1.35/lb
- Petroleum Coke
- Wood
 - ▶ \$0.085/lb
- Peat

Produced by grinding, roasting, and activating the source materials with high-temperature steam.

GAC – Design Calculations

$$(X/m) = K_f C_e^{1/n}$$

 $({}^{X}/m)$ = Amount of adsorbate adsorbed per unit weight of adsorbent

 C_e = Equilibrium concentration of adsorbate in solution after adsorption

 K_{f} , n = Empirical constants

Freundlich Isotherm

Freundlich Isotherm Jar Test

GAC – Design Calculations (cont.)

$$t_b = \frac{(x/m)_b M_c}{Q[C_i - (C_b/2)][8.34 \text{ lb/Mgal} \cdot (\text{mg/L})]}$$

 M_c = mass of carbon in the column, lb or g

Q = flowrate, Mgal/d

 C_i = influent organic concentration, mg/L

 C_b = breakthrough organic concentration, mg/L

 t_b = time to breakthrough, d

Dynamic Testing Using Rapid Small-Scale Column Test (RSSCT)

- Dynamic testing is performed with a set of GAC columns connected in series.
- Samples taken at the effluent of each column allow the development of concentration breakthrough curves.
- Data is used for full-scale design.

Design Considerations

Design Considerations (cont.)

i = Initial

x = Time x

b = Bed

I = Influent

MTZ = Mass

Transfer Zone

Variables and Design Parameters

- GAC type
- Background water quality
- Pretreatment
- Carbon changeout requirements
- Backwash requirements

GAC Advantages/Disadvantages

GAC Costs

MTBE Removal

Flow (gpm)	Capital (\$1,000)	Annual (O&M \$1,000)	Unit Costs (\$/1,000 gal)
60	\$150-234	\$61 – 127	\$2.30 - 4.43
600	1,000	161 – 665	\$0.77 - 2.37
6,000	6,000	1,000 - 6,500	\$0.50 - 2.22

Case Study - Fried Industries, NJ

Record of Decision (ROD)

- VOC contamination
 - Groundwater
- Pump-and-treat with GAC

1,1,1-TCA	15 ppb
1,1-DCA	670 ppb
Toluene	280,000 ppb
Xylene	49,000 ppb
1,2,4-TMB	55,000 ppb

RITS OCT 2001: Secondary Treatment Trains

Case Study - Fried Industries, NJ (cont.)

Conventional Pollutants

Chemical Oxygen Demand (COD) 1,480 ppm Biological Oxygen Demand (BOD) 330 ppm Total Organic Carbon (TOC) 323 ppm

Negotiate significant difference from ROD

Case Study – IBM

TOC 2 ppm

1,1,1-TCE 20 ppb

PCE 20 ppb

DCE 20 ppb

TSS 10 mg/L

Presentation Overview

- Background
- Secondary Treatment Trains
 - Air Stripping (AS)
 - Granular Activated Carbon (GAC)
 - Advanced Oxidation Processes (AOP)
 - Biological Treatment
- References
- Points of Contact

- Definition
- Oxidants/Process
- Water Quality Impacts
- Advantages/Disadvantages
- AOP Processes
- Costs
- Case Studies

Advanced Oxidation Processes (AOP)

Definition

■ The transfer of one or more electrons from an electron donor (reductant) to an electron accepter (oxidant), which has a higher affinity for electrons (the end products of complete oxidation of organic compounds are CO₂ and H₂O).

Oxidants

Compound	Oxidation Potential
Fluorine	2.85 ev
Hydroxyl radicals (-OH)	2.70 ev
Ozone	2.07 ev
Chlorine	1.49 ev

AOP Technologies

Established

- Hydrogen Peroxide/Ozone
 - → H₂O/O₃
- Ozone Ultraviolet Irradiation
 - O₃/UV
- Hydrogen Peroxide/ Ultraviolet Irradiation
 - H₂O₂/UV

Emerging

- High Energy Electron Beam Irradiation (E-beam)
- Cavitation(Sonication & Hydrodynamic)
- TiO₂ –Catalyzed UV Oxidation
- Ex Situ Fenton's Reaction

Two Stage Process

1. Formation of strong oxidant

2. Reaction of oxidant with organic contaminant

$$CO_3 + H_2O$$

Water Quality Impacts

- Alkalinity
- TOC & NOM
- Nitrates/Nitrites
- Phosphates/Sulfates
- Iron (II), Copper (I), Manganese (II)
- Turbidity

AOP Advantages / Disadvantages

Advantages

- Destructive process
- Disinfection capability
- Established technology

Disadvantages

- Oxidation byproducts
- Bromate formation
- Interfering compounds

Process Types

Hydrogen Peroxide/Ozone (H₂O₂/O₃) process

$$H_2O_2$$
 + H_2O \longleftrightarrow HO_2^- + H_3O^+
 O_3 + HO_2 \longrightarrow •OH + O_2^- + O_2

Ozone/Ultraviolet Irradiation (O₃/UV) process

$$O_3 + HO_2 \longrightarrow O_2 + H_2O_2 (\lambda < 300 \text{ nm})$$

 $2O_3 + H_2O_2 \longrightarrow 2 \cdot OH + 3O_2$

Hydrogen Peroxide/UV (H₂O₂/UV) Process

$$H_2O_2 \longrightarrow 2 \cdot OH \quad (\lambda < 300 \text{ nm})$$

(H₂O₂/O₃) Process Schematic

E-Beam

- Ionizing radiation from an electron beam source is used to initiate changes in aqueous contaminants.
- E-beam radiation is absorbed almost completely by target compounds in their electron orbitals, thereby changing the molecular structure of the compound.
- Typically used in food and beverage industry for disinfection.
- Little potential for byproduct formation and water quality typically has minimal effect.
- Energy-intensive and may ultimately prove to be cost-prohibitive.
- Public stigma of radiation.

E-Beam Process Schematic

Cavitation

- Formation of microbubbles in solution that implode violently after reaching critical resonance size.
 - The rapid implosion of microbubbles results in high temperatures at the bubble/water interface causing thermal decomposition of contaminants or decomposition of water into OH and H radicals.
- Three methods include ultrasonic irradiation, pulse plasma cavitation, and hydrodynamic cavitation.
 - Ultrasonic produces microbubbles by sequencing ultrasonic frequency cycles.
 - Pulse plasma uses high voltage discharge through water.
 - Hydrodynamic cavitation uses high-velocity or pressure gradients.
- Process uses additional oxidants O₃ and H₂O₂.
- Hydrodynamic cavitation is a black box technology.
- No full-scale applications to date.

Cavitation Process Schematic

TiO₂ – Catalyzed UV Oxidation

- TiO₂, a solid metal catalyst, is illuminated by UV lights (380 nm) to create an excited state of electrons, thereby initiating a wide range of chemical reactions including formation of hydrogen peroxide and OH radicals.
- Subject to radical scavengers affecting other AOPs.
- pH must be controlled to minimize fouling of TiO₂ by dissolved anions and cations, and may require pretreatment by ion exchange.
- No full-scale applications in operation.
- Need for TiO₂ catalyst could be high depending on water characteristics competing for TiO₂ active sites (NOM, inorganics, metal cations).

TiO₂ Process Schematic

Fenton's Reaction

- Process requires little energy compared to the AOPs.
- No vapor emissions.
- No full-scale ex situ applications to date.
- Need to remove excess iron from treated water.
- pH <2.5 needed to keep iron in solution.</p>

Fenton's Process Schematic

Comparative Analysis of Various AOPs

AOP	Relial	oility	Flexibility	Adaptability	Potential for Modifications	
Technology	Mechanical	Process	1 lexibility	Adaptability		
H ₂ O ₂ /O ₃	High	High	High	Medium	Low	
O ₃ /UV	Medium	High	High	Low	Low	
H ₂ O ₂ /UV	V Medium		High	Low	Medium	
E-beam	Low	Low	Low	High	High	
Hydrodynamic Cavitation	Medium	Low	Low	High	Medium	
TiO ₂ -Catalyzed UV Oxidation	Low	Medium	Medium	Medium	Low	
Fenton's Reaction	Low	Medium	Medium	Medium	Low	

Comparative Analysis of Various AOPs (cont.)

AOP Technology	Bromate Regulatory Compliance	Energy Efficiency	Public Acceptance	Ease of Implementation
H ₂ O ₂ /O ₃	Low-Medium	Medium	High	High
O ₃ /UV	Low	Low	High	High
H ₂ O ₂ /UV	High	Medium	High	High
E-beam	High	Low	Low	Medium
Hydrodynamic Cavitation	High	Medium	Low	Medium
TiO ₂ -Catalyzed UV Oxidation	High	Medium	Low	Low
Fenton's Reaction	High	High	Low	Low

AOP Capital Costs

MTBE Removal

Flow	H ₂ O ₂ /UV	H ₂ O ₂ /O ₃	Cavitation/H ₂ O ₂ (\$K)	TiO ₂ /H ₂ O ₂
(gpm)	(\$K)	(\$K)		(\$K)
60	177 – \$266	144 – 622	134 – 260	277 – 691
600	266 – 1,300	1,666 – 1,888	356 – 482	1,142 – 3,092
6,000	1,000 – 10,000	8,000 – 9,775	1,446 – 4,339	9,711 – 26,288

AOP O&M Costs

MTBE Removal

Flow	H ₂ O ₂ /UV	H ₂ O ₂ /O ₃	Cavitation/H ₂ O ₂ (\$K)	TiO ₂ / H ₂ O ₂
(gpm)	(\$K)	(\$K)		(\$K)
60	54 – 108	47 – 64	60 – 75	74 – 107
600	157 – 551	123 – 222	167 – 239	265 – 483
6,000	930 – 4,210	464 – 1,351	1,101 – 1,725	2,389 – 4,505

Case Study - Vineland, NJ

Problem:

Vineland Chemical Co. manufactured organic arsenical herbicides and fungicides from 1949 to the early 1990s.

- Objective was to treat the groundwater to total arsenic concentration of 10 ppb.
- Previous studies found arsenic in the 1,000-2,000 ppb range treatable by coagulation and filtration.
- New water quality data showed organic arsenic concentrations in range of 123,000 ppb monomethylarsenate, with total arsenic concentrations of 210,000 ppb.

Case Study - Vineland, NJ

Monomethylarsenate	41 ppb
Dimethylarsenate	5.6 ppb
As ⁺³	1,637 ppb
As ⁺⁵	1,023 ppb

Peroxide (H_2O_2) alone treated to 200-500 ppb range. H_2O_2/UV with coagulation and filtration achieved desired effluent quality of 10 ppb.

Case Study – Johnson & Johnson, Puerto Rico

- Objective was to develop a new wastewater management strategy for an integrated sanitary, utilities, and process wastewater treatment system.
- J & J discharges wastewaters to PRASA Humaco wastewater treatment plant and has limits on mass loads they can discharge.
- Treatment objective was to reduce COD from 3,000 ppm to 350 ppm.

Case Study – Johnson & Johnson, Puerto Rico

J&J Consumer products facility wastewater treatment objective: 350 ppm

	Oxidation Time (minutes)						
	0	5	10	15	20	25	30
COD (ppm)	5,200	4,300	3,500	2,600	900	280	150

 H_2O_2 Dosage 2,000 ppm; pH – 4.7

Case Study – Johnson & Johnson, Puerto Rico (cont.)

Full-Scale Treatment Conditions

Flowrate (Q) 7 gpm

COD 3,000 ppm

CODe 350 ppm

Oxidation Time 7.4 min

Power Demand 207 kW

H₂O₂ Dosage 730 lb/day

Muriatic Acid 25 lb/day

Case Study – Johnson & Johnson, Puerto Rico (cont.)

Summary:

H₂O₂/UV successfully treated high organic COD load of 5,200 ppm to desired effluent quality.

Costs

Capital: \$650 – 800K

■ O&M: \$40 – 50K

Presentation Overview

- Background
- Secondary Treatment Trains
 - Air Stripping (AS)
 - Granular Activated Carbon (GAC)
 - Advanced Oxidation Processes (AOP)
 - Biological Treatment
- References
- Points of Contact

- Definition
- Oxidation Processes
- Biotreatment Processes
- Design & Operation Considerations
- Case Study

Biological Treatment

Definition

The conversion of organic matter to inorganic end products and cell tissue via aerobic, anaerobic, or facultative, suspended, or attached growth systems.

Biological Oxidation Process

Organic Matter +
$$O_2$$
 + bacteria \longrightarrow CO_2 + NH_3 + H_2O

Biotreatment Processes – Fixed Film

Rotating Biological Contactor (RBC)

RITS OCT 2001: Secondary Treatment Trains

Biotreatment Processes – Suspended Growth

Fluidized Bed (FBR)

Activated Sludge

Design & Operation Considerations

- Hydraulic loading
 - Must control to minimize scouring of biomass in fixed film systems.
- Food:Mass ratio
 - ▶ High F:M (>0.7) results in incomplete metabolism of organic matter.
 - Low F:M (<0.7) bugs near starvation results in good organic treatment.
- Organic loading BOD/N/P ratio of 100/5/1
- Dissolved oxygen >2 ppm
- pH 6.5-8.5

Advantages/Disadvantages

Advantages

- Can handle high organic load compared to GAC.
- Not affected by dissolved inorganics.
- Microbes can be cultured for specific contaminants.

Disadvantages

- Metals and SOCs in high concentrations could be toxic to microbes.
- Increased operational responsibilities.
- Not suitable for waste stream with varying waste load.

Case Study – VAAP Chattanooga, TN

- Volunteer Army Ammunition Plant (VAAP) manufactured up to 16,000 lb of TNT during war time activities. Nitrotoluene, used during production, and production byproducts contaminated site groundwater.
- Pilot system proposed for use was fluidized bed reactor (FBR) capable of treating flows of 20-30 gpm.
- Site hydrology could only deliver 1-3 gpm.
- Demonstration project of FBR treatment of TNT and DNT was conducted in field with low-flow system to develop system design criteria for FBR treatment at other DoD sites.

Case Study – VAAP Chattanooga, TN

FBR Schematic Effluent Substrate Methanol pH Adjust Fluidized Bed Reactor Influent Feed Tank Source O₂

Case Study - VAAP Chattanooga, TN

Case Study – VAAP Chattanooga, TN

Case Study - VAAP Chattanooga, TN

FBR Comparison Costs

Capital, O&M, and NPV Cost Comparison for Case 1 (30 gpm, 37 lb/day NT)

Technology	Installed Capital Cost¹	O&M Costs ²	NPV Cost ³
FBR System	\$300,000	\$40,581/yr \$2.57/1,000 gal \$3.02/lb	\$598,006 \$3.79/1,000 gal \$4.45/lb
UV/Ozone	\$601,880	\$57,548/yr \$3.65/1,000 gal \$4.29/lb	\$1,000,649 \$6.35/1,000 gal \$7.46/lb
LGAC	\$100,825	\$60,447/yr \$3.83/1,000 gal \$4.50/lb	\$519,319 \$3.29/1,000 gal \$3.87/lb

¹ Does not include one-time startup and training cost.

² Includes costs for commercial waste disposal for FBR, but does not include cost for spent GAC disposal (from FBR) at end of project.

³ 10-year project life: 4% interest/inflation rate; 12% discount rate. Includes one-time startup and training cost and cost for spent GAC disposal (from FBR) at end of project.

FBR Cost Comparison (cont.)

Capital, O&M, and NPV Cost Comparison for Case 2 (100 gpm, 122 lb/day NT)

Technology	Installed Capital Cost¹	O&M Costs ²	NPV Cost ³
FBR System	\$694,000	\$107,916/yr \$2.05/1,000 gal \$2.41/lb	\$1,489,321 \$2.83/1,000 gal \$3.33/lb
UV/Ozone	\$1,090,600	\$137,437/yr \$2.61/1,000 gal \$3.07/lb	\$2,033,911 \$3.87/1,000 gal \$4.55/lb
LGAC	\$252,970	\$184,978/yr \$3.52/1,000 gal \$4.13/lb	\$1,519,760 \$2.89/1,000 gal \$3.40/lb

¹ Does not include one-time startup and training cost.

² Includes costs for commercial waste disposal for FBR, but does not include cost for spent GAC disposal (from FBR) at end of project.

³ 10-year project life: 4% interest/inflation rate; 12% discount rate. Includes one-time startup and training cost and cost for spent GAC disposal (from FBR) at end of project.

Summary

- Know your water chemistry.
- Consider post-treatment chemistry.
- Use treated effluent requirements to drive treatment selection and design.
- Consider using multiple processes, phasing unit processes out as groundwater is remediated.
- Determine what ancillary processes may be needed to provide effective treatment.
- Beware new-emerging black box technologies.
- Understand site hydrogeology.

http://enviro.nfesc.navy.mil/erb/erb_a/restoration/technologies/sel_tools/secondary/default.asp

Select Treatment Technology

View Typical Costs

Compare Vendors

Select Site COCs

Enter Site-Specific Variables

Input Influent Water Quality Parameters

View Evaluation

References

- "Treatment Technologies for Removal of Methyl Tertiary Butyl Ether (MTBE) from Drinking Water: Air Stripping, Advanced Oxidation Processes, Granular Activated Carbon, Synthetic Resin Sorbents," 2nd Edition; February 2000.
- Metcalf & Eddy, "Wastewater Engineering, Treatment Disposal Reuse.,
 3rd Edition. McGraw-Hill, Inc., (1991).
- Montgomery, James M., "Water Treatment Principles and Design."
 John Wiley & Sons, (1985).
- Riznychok, W. M., "Air Stripping of VOCs from Sanitary and Industrial Effluents," December 1982.
- Hammer, Mark J., "Water and Waste-Water Technology," John Wiley & Sons, Inc., (1975).